Quantum information at the LHC

Dresden IKTP Seminar, 30/05/2024 Baptiste Ravina

Outline of the seminar

I want to show you the recent ATLAS observation of quantum entanglement in top quark pair production:

- introduce the top quark
- what has been done historically (spin correlations)
- moving to quantum entanglement
- discussing the experimental results

Then I will give an overview of **what else is possible** in terms of **quantum information at the LHC**:

- prospects for Higgs physics
- beyond entanglement: Bell's inequalities

Starting with top quark physics...

Fundamentals of top quark physics

- Most massive fundamental particle in the SM
- \rightarrow its Mass / Yukawa is a free parameter: need to measure it
- Mean lifetime $\sim 5 \times 10^{-25} \text{s} \ll 1/\Lambda_{\text{QCD}} \sim 10^{-23} \text{s}$
- \rightarrow the only "bare quark"
 - BR(t→Wb) ~ 100%
- \rightarrow unique experimental signature
 - Abundant production at the LHC, O(100M) pairs
- \rightarrow "standard candle", very useful for calibrations

Particle identification at ATLAS in one slide

A long way to the top...

CMS results ATLAS results

29 years of top quark physics!

Ever more precise measurements enabled by excellent collider and detector performance

ATLAS Simulation Preliminary 2500 GN2 $\sqrt{s} = 13 \text{ TeV}$ 60 $t\bar{t}$ jets, $\varepsilon_b = 70\%$ 2000 50 c-jet rejection FTAG-2023-01 Run 3 reco 1500 40 GN1 Light-jet DL1d DL1r 20 DL1 500 x1.4 10 F 0 2018 2019 2020 2021 2023 2017 2022 Year

Benefit from all areas of Combined Performance:

- jets & missing energy
- flavour tagging
- lepton ID & isolation
- <u>luminosity</u>
- ...

The range of top quark physics

Prelude: top quark spin correlations

The top quark has a mean lifetime $\sim 5 \times 10^{-25}$ s << $1/\Lambda_{QCD} \sim 10^{-23}$ s

 $BR(t \rightarrow Wb) \sim 100\%$ + weak interaction is maximally parity-violating

→ correlations are observable!

$$\frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega_1 \Omega_2} = \frac{1}{4\pi^2} \left(1 + \alpha_1 \mathbf{B}_1 \cdot \hat{\ell}_1 + \alpha_2 \mathbf{B}_2 \cdot \hat{\ell}_2 + \alpha_1 \alpha_2 \hat{\ell}_1 \cdot \mathbb{C} \cdot \hat{\ell}_2 \right)$$
top polarisations spin correlations

= full spin density matrix

State-of-the-art in 2020...

As you may have heard...

The Nobel Prize in Physics 2022 was awarded jointly to Alain Aspect, John F. Clauser and Anton Zeilinger "for experiments with entangled photons, establishing the violation of Bell inequalities and pioneering quantum information science"

gg→ttbar: spin-singlet state at threshold

g

g

Quantum tops beyond (classical) spin correlations

Eur. Phys. J. Plus (2021) 136 (March 2020) → first analysis of top quark pair production from the quantum information point of view: "bipartite qubit system" $\frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega_1 \Omega_2} = \frac{1}{4\pi^2} \left(1 + \alpha_1 \mathbf{B}_1^{\mathbf{0}} \cdot \hat{\ell}_1 + \alpha_2 \mathbf{B}_2^{\mathbf{0}} \cdot \hat{\ell}_2 + \alpha_1 \alpha_2 \hat{\ell}_1 \mathbf{\mathbb{C}} \hat{\ell}_2 \right)$ 0.5 4.5 4.0 $\,\,{
m Tr}\left[{
m \Bbb C}
ight]<-1\,$ Peres-Horodecki criterion 0.4 3.5 $\int_{1.5}^{2.5} \frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}\cos\varphi} = \frac{1}{2} \left(1 - D\cos\varphi\right) \quad \text{a simple observable}$ 1.5 0.1 1.0 $\overset{\text{o.5}}{\underset{\text{o.0}}{}} D = \frac{\text{Tr}\left[\mathbb{C}\right]}{2} \Rightarrow D < -\frac{1}{2} \quad \text{a quantum entanglement} \\ \overset{\text{marker!}}{\underset{\text{marker!}}{}}$ gg spin-singlet 550 350 450 500 400 $M_{t\bar{t}}[\text{GeV}]$

So... did CMS observe quantum entanglement?

The ATLAS result (observation)

Quantum entanglement in dilepton ttbar

Dilepton eµ final state is very clean (90% purity) and at the end of Run 2 we have about a million events after preselection.

Then partition events into three selections:

- 340<M_{tt}<380: entanglement signal region
- 380<M^{*}_{tt}<500: validation region (dilution from mis-reconstruction)
- 500<M_{tt}: no-entanglement validation region

Analysis procedure

"Calibration curve" method: use the nominal MC to map the detector-level D value (average of distribution) to the fiducial particle-level D.

Systematics are propagated with their own curves, quadratic envelope.

A closer look at uncertainties

"Backgrounds": mostly $Z \rightarrow \tau \tau$, which leads to a flat $\cos(\phi)$ distribution (spin information from taus is lost)

Calibrating to fiducial particle-level reduces the parton shower uncertainty (Pythia vs Herwig) : full details <u>in the</u> <u>paper</u>.

Signal modelling: by far the largest contribution

Systematic source	$\Delta D_{\text{particle}}(D = -0.470)$	ΔD (%)	
Signal Modelling	0.017	3.2	
Electron	0.002	0.4	
Muon	0.001	0.1	
Jets	0.004	0.7	
<i>b</i> -tagging	0.002	0.4	
Pileup	< 0.001	< 0.1	
$E_{\mathrm{T}}^{\mathrm{miss}}$	0.002	0.3	
Backgrounds	0.010	1.8	
Stat.	0.002	0.3	
Syst.	0.021	3.8	
Total	0.021	3.8	TOPQ-2021-24
Leading Systema	tics	Relatvi	ie Size $[D = SM (-0.47)]$
Top-quark decay			1.6 %
$7 \rightarrow \tau \tau Cross sc$			
$L \rightarrow ii Closs-sc$	ection		1.5 %
$Z \rightarrow TT Closs-scRecoil To Top$	ection		1.5 % 1.1 %
Recoil To Top Final State Radia	tion		1.5 % 1.1 % 1.1 %
Recoil To Top Final State Radia Scale Uncertainti	ection tion ies		1.5 % 1.1 % 1.1 % 1.1 %
Recoil To Top Final State Radia Scale Uncertainti NNLO Reweight	ection tion ies ing		1.5 % 1.1 % 1.1 % 1.1 % 1.1 %
Recoil To Top Final State Radia Scale Uncertainti NNLO Reweight Parton Distributio	ection ition ies ing on Function (5)		$\begin{array}{c} 1.5 \% \\ 1.1 \% \\ 1.1 \% \\ 1.1 \% \\ 1.1 \% \\ 1.1 \% \\ 0.8 \% \end{array}$
Recoil To Top Final State Radia Scale Uncertainti NNLO Reweight Parton Distributio pThard1 Setting	ection ition ies ing on Function (5)		$\begin{array}{c} 1.5 \% \\ 1.1 \% \\ 1.1 \% \\ 1.1 \% \\ 1.1 \% \\ 1.1 \% \\ 0.8 \% \\ 0.8 \% \end{array}$
Recoil To Top Final State Radia Scale Uncertainti NNLO Reweight Parton Distribution pThard1 Setting Top-quark Mass	ection tion ies ing on Function (5)		$\begin{array}{c} 1.5 \% \\ 1.1 \% \\ 1.1 \% \\ 1.1 \% \\ 1.1 \% \\ 1.1 \% \\ 0.8 \% \\ 0.8 \% \\ 0.7 \% \end{array}$

Observation of quantum entanglement in dilepton ttbar

$D = -0.547 \pm 0.002$ (stat.) ± 0.020 (syst.)

expected: $D = -0.470 \pm 0.002$ (stat.) ± 0.017 (syst.)

Observation of quantum entanglement in dilepton ttbar

0.4

0.2

-0.2

-0.4

-0.6

-0.2 -0.18 -0.16 -0.14 -

significant. It is reported in a fiducial phase space defined with stable particles to minimize the uncertainties that stem from limitations of the Monte Carlo event generators and the parton shower model in modelling top-quark pair production. The entanglement marker is measured to be $D = -0.547 \pm 0.002$ (stat.) ± 0.021 (syst.) for $340 < m_{t\bar{t}} < 380$ GeV. The observed result is more than five standard deviations from a scenario without entanglement and hence constitutes both the first observation of entanglement in a pair of quarks and the highest-energy observation of entanglement to date.

fect predictions, not calibration

at.) ± 0.020 (syst.)

The CMS result (confirmation)

Different analysis strategy for CMS

- Signal region: 345-400 GeV window in M(ttbar)
- Cut on ttbar velocity (β<0.9) to enrich sample in gg→ttbar
- Consider ee+µµ+eµ events, but only 2016 data
- Mix spin-on and spin-off samples to get different predictions for D
- Profile-likelihood fit at detector-level
- Toponium: spin-0 colour-singlet pseudo-scalar modelled in MadGraph+Py8 $M(\eta_t) = 343 \text{ GeV} (337-349 \text{ GeV})$ $\Gamma(\eta_t) = 7 \text{ GeV}$ $\sigma(\eta_t) = 6.43 \text{ pb}$

CMS-TOP-23-001

Modelling in the inclusive phase-space

CMS-TOP-23-001

Modelling at threshold

FxFx gives best modelling at threshold

Post-fit clearly prefers toponium

1.0

Another observation of quantum entanglement CMS-TOP-23-001

5.7 observed (5.1 o expected)

Toponium 50% normalisation uncertainty + vary binding energy ±0.5 GeV

D = -0.478 ± 0.017 (stat.) ± 0.019 (syst.)

Source	Uncertainty
	D
JES	10.1%
Toponium normalization	10.1%
Parton Shower (ISR)	6.3%
Scale	1.8%
Parton Shower (FSR)	1.2%
JER	0.9%
Z+jets shape	0.8%
b quark fragmentation	0.4%
tt normalization	0.3%
PDF	0.3%

[Submitted on 10 Mar 2022 (v1), last revised 20 Sep 2022 (this version, v2)]							
Your Afik Juan Ramén Muñoz de Neura			Submitted on 4 Ma	r 2020 (v1), last revised 6 Sep 2021 (thi	sversion, v3)		
Yoav Alik, juan kamon Munoz de Nova	[Submitted on 8 Sep 2022]		Entanglei	ment and quantum	tomography with top quarks at the	LHC	
The plants represent the second state of the s	Quantum discorro and steering in top qua Yoav Afik, Juan Ramón Muñoz de Nova Top quarks have been recently shown to be a promising system to stud discuss topics such as entanglement. Bell nonlocality or quantum tomo statistical significance. Interestingly, due to the singular nature of the m ellipsoid can be experimentally reconstructed, both highh-demanding i discord and steering can provide witnesses of new physics beyond the S Comments: 6 pages, 3 figures Subjects: Quantum Physics (quant-ph); High Energy Physics – Experiment hep-en Cite as: antiviz200.3396 (quant-ph) (for antiviz200.3396 (quant-ph) https://doi.org/10.4639/04.2007.0050 €	Y quantum information problems at the F praphy. Here, we provide the full picture function in a second in a se easurement process, quantum discord c neasurements in conventional setups. In tandard Model.	Yoav Afik, Juar Entanglement experimental can be observ statistical sign experimental experimental Comments: Subjects: Cite as: Journal reference:	Is Ramón Muñoz de Nova is a central subject in quantum m sudy of fundamental aspects of q the first proposal of entanglement de by direct measurement of the a subfacance, using the current data re is (submitted on 25 sep 2022 c/u). Quantum state ar Rachel Ashby-Pickering, de Arather general method of the d-dimensional gene	schanics. Due to its genuine relativistic behavior and fundamenta uantum mechanics. We propose the detection of entanglement b detection in a pair of quarks, and also the entanglement observan logilar separation between the leptons ansing from the decay of corded during Run 2 at the LIKC. In addition, we develop a simple larevised 11 Oct 2022 etihus version, v2/I tomography, entanglement detect S Alan J. Barr, Agnieszka Wierzchucka for determining the spin density matrix of a multi-particle spi argitard Cell Mena conservation for a multi-particle spin englistic Cell Mena conservation for a multi-particle spin for determining the spin density matrix of a multi-particle spin for determining the spin density matrix of a multi-particle spin for determining the spin density matrix of a multi-particle spin for determining the spin density matrix of a multi-particle spin for determining the spin density matrix of a multi-particle spin for determining the spin density matrix of a multi-particle spin for determining the spin density matrix of a multi-particle spin for determining the spin density matrix of a multi-particle spin for determining the spin density matrix of a multi-particle spin for determining the spin density matrix of a multi-particle spin for determining the spin density matrix of a multi-particle spin for determining the spin density matrix of a multi-particle spin for determining the spin density matrix of a multi-particle spin for determining the spin density matrix of a multi-particle spin for determining the spin density matrix of a multi-particle spin for determining the spin density matrix of a multi-particle spin for determining the spin density matrix of a multi-particle spin for determining the spin density matrix of a multi-particle spin for determining the spin density matrix of a multi-particle spin for determining the spin density matrix of a multi-particle spin for determining the spin density matrix of a multi-particle spin for determining the spin density matrix of a multi-particle spin	I nature, high-energy colliders are attractive systems for the etween the spins of top-antitop-quark pairs at the LHC, tion at the highest energy scale so far. We show that entanglement the top-antitop pair. The detection can be achieved with high protocol for the quantum tomography of the top-antitop pair. This tion and Bell violation prospects in we system from angular decay data is presented. The method is based or protocol difference and Ward-stransforms on the sobare. Each examines	eak decays of
			Related DOI:	ht spin density matrix can c	an b	ton quark pair production at the LUC	
				Monte Carlo simulations	of pr	top quark pair production at the Enc	
				$H \rightarrow ZZ^*$. Measurement	s are Rafael Aoude, Eric Madge, Fabio Maltoni, Luca N	Aantani	
				Comments: v2: additional refere	Quantum information observables, such as entangler	ment measures, provide a powerful way to characterize the properties	of quantum states. We propose to use them
		ed on 2 lun 2021 (v1). last revised 26 lul 2	022 (this version, v4	Subjects: Ouantum Physics	we examine how higher-dimensional operators in the	e framework of the SMEFT modify the Standard Model expectations. V	Ve explore two regions of interest in the phase
	Test	ting Bell inequalities	in Higgs	boson decavs	the Standard Model produces maximally entangled st partons, $q\bar{q}$ or gg , on whether only linear or up to gu	tates: at threshold and in the high-energy limit. We unveil a non-trivi- adratic SMEFT contributions are included, and on the phase space red	al pattern of effects, which depend on the ini aion. In general, we find that higher-dimensi
	Alan B	arr	55	,	lower the entanglement predicted in the Standard Mo	odel.	, , , , , , , , , , , , , , , , , , , ,
intoro		ISubmitted	on 28 San 20221				
INTOROS	Higg of th	as boson decays produce $Labor$	atory-fra	me tests of quan	tum entanglement in $H \to WW$		
	dete	rmined. Numerical simul	illes Conveder	une tests of quan			
	near cont	r-maximally violated. Exp J. A. Agu rolled then statistically si	lilar-Saaveura	[Submitted on 27 Seg	2022]		
	-	Quanti	im entanglement	only invol Testing er	ntanglement and Bell inequalit	ies in $H \to ZZ$	
	Comme Subjects	nts: Sign corrections t High Energy Phy: be use	d to observe the	quantum L.A. Aquilar-Sa	avedra A Bernal I A Casas I M Moreno		
	Cite as:	arXiv:2106.01377 dimen:	sional) angular di	stribution			
		https://doi.org/1 Comments	LaTeX 6 page	We discuss qua	ntum entanglement and violation of Bell inequalities in ortant suppression of the statistics, this is traded by cl	the $H \rightarrow ZZ$ decay, in particular when the two Z-bosons decay signals from a "guasi maximally-entangled" system which	ecay into light leptons. Although such p
	Journal Related	reference: Physics Letters B Subjects: DOI: https://doi.org/l Report num	High Energy	Physics - C-22-119 phenomena at	high energy. In this paper we devise a novel framework	k to extract from $H \rightarrow ZZ$ data all significant information relations	ated to this goal, in particular spin corre
		Cite as:	arXiv:2209.14	033 [hep- observables. In	this context we derive sufficient and necessary condit	ions for entanglement in terms of only two parameters. Likew	ise, we obtain a sufficient and improved
			(or arXiv:2209 https://doi.or	9.14033v1 for the violation rg/10.4855 entanglement of	to Bell-type inequalities. The numerical analysis show tan be probed beyond the 5σ level, while the sensitivity	vs that with a luminosity of $L = 30000^{-5}$ entanglement can be v to a violation of the Bell inequalities is at the 4.5σ level	e probed at > 3σ level. For $L = 3ab^{-1}$ (
	[Submitted on 1 May 2022 (v1), last revised 1 Aug 2022 (this version, v2)]					
comp	aunity Improved tes	ts of entanglement and	d Bell ineq	ualities with LHC to	ops	heory (hep-th); Quantum Physics (quant-ph)	
	J. A. Aguilar-Saavedr	a, J. A. Casas			[Submitted on 19 Oct 2021 (v1), last revised 25 Mar 2022 (this version,	v2))	
LUIIII	We discuss quantum	entanglement in top pair production at t	he LHC. Near the <i>ti</i>	threshold, entanglement observation the laboratory frame. Furtherm	Quantum tops at the Enc. nom en	itanglement to ben mequanties	
	combinations of tt sp	in correlation coefficients involved in the	e measurement of e	entanglement and Bell inequalities	Claudio Severi, Cristian Degli Esposti Boschi, Fabio M	laltoni, Maximiliano Sioli	
[Submitted on 24 Aug 2022]	7 for Ball inequalities	near threshold			We present the prospects of detecting quantum entanglem	ent and the violation of Bell inequalities in $t\bar{t}$ events at the LHC. We intro-	roduce a unique set of observables suitable fo
Constraining new physics in entangle	d two-qubit systems: top-quark, tau-lepto	n and photon pairs	bmitted on 23 Feb 2	021 (v1), last revised 27 Oct 2021 (thi	s version, v2)]		only very high- p_T events are sensitive to a vie
Marco Fabbrichesi, Roberto Floreanini, Emidio Gabrielli		T.	esting Bel	i inequalities at th	e LHC with top-quark pairs		different unfolding methods and independen he high luminosity LHC run.
The measurement of quantum entanglement can provide a new a	nd most sensitive probe to physics beyond the Standard Model. We use the co	ncurrence of the top-quark pairs spir M.	Fabbrichesi, R.	Floreanini, G. Panizzo			
states produced at colliders to constrain the magnetic dipole terr that of τ -lepton pairs or two photons spin states from the decay	n in the coupling between top quark and gluons, that of r-lepton pairs spin sta of the Higgs boson to try distinguishing between CP-even and odd couplings.	ates to bound contact interactions an These four examples show the powe	Entanglement bet	ween the spins of top-quark pai	rs produced at a collider can be used to test a (generalized) B	ell inequality at energies never explored so far. We show how the	
of the new approach as well as its limitations. We show that diffe	rences in the entanglement in the top-quark and τ -lepton pairs production cro or classical correlations. Instead, the final states in the decays of the Hinos bos	oss sections can provide constraints on remain maximally entangled even	measurement of a 99.99% CL with th	a single observable can provide a ne higher luminosity of the next	test of the violation of the Bell inequality at the 98% CL with run.	the data already collected at the Large Hadron Collider and at the	
in the presence of CP-odd couplings and cannot be used to set b	ounds on new physics. We discuss the violation of Bell inequalities featured in	all four processes and find that the		,,			
decays of the Higgs boson into τ -lepton pairs or two photons co	nstitute the best instances to observe such violations.	Co	mments: 4 pa	iges, 1 figure			

Comments:	31 pages, 16 Figures
Subjects:	High Energy Physics - Phenomenology (hep-ph); High Energy Physics - Experiment (hep-ex)
Cite as:	arXiv:2208.11723 [hep-ph]
	(or arXiv:2208.11723v1 [hep-ph] for this version)
	https://doi.org/10.48550/arXiv.2208.11723

Comments: 4 pages, 1 figure High Energy Physics - Phenomenology (hep-ph); High Energy Physics - Experiment (hep-ex); Quantum Physics (quant-ph) Cite as: arXiv:2202.11838 [hep-ph] (arXiv:2202.11838 [hep-ph] for this version https://doi.org/10.44550/ arXiv.2202.11888] Journal reference: Phys.Rev.Lett. 127 (2021) 16, 161801 Related DOD: https://doi.org/10.103/Phys.Rev.Lett.127.161801] The landscape of quantum information at the LHC

Quantum tops beyond entanglement

Follow-up papers by the same authors formulate additional <u>quantum information</u> <u>theory</u> concepts in term of <u>ttbar production at the LHC</u>:

- **Quantum Discord** measures the departure of the information entropy from classical theory
- Quantum Steering measures the non-local effect of one measurement on the outcome of the other
- both are usually very hard to measure, given the need to repeat experiments over large samples of spin directions → the LHC gives us millions of randomly sampled directions "for free"!
- both are asymmetric quantities → new tests of CP violation in the strong sector!

In general, want to perform quantum tomography = reconstruct the full spin density matrix

Improved tests of entanglement with tops

- A new general marker of quantum entanglement has been proposed
 - in the **threshold** region, exactly what is being done now (D=Tr[C]/3)
 - in the **boosted** region, would need slightly different angular distribution
 - \circ at threshold, additional cut on the ttbar velocity β can reduce the qq contamination
 - \circ both approaches can increase the statistical sensitivity by ~20%
- Similarly, we can **simplify tests** of Bell's inequality violation
 - sufficient to know the 3 spin correlation coefficients, but better done in the beam basis
 - alternatively, could measure a simple asymmetry

 $E \equiv |C_{kk} + C_{rr}| - C_{nn} - 1 > 0$

Quantum entanglement in the **SMEFT**

- The 15 components of the ttbar spin density matrix can <u>constrain SMEFT</u> <u>operators affecting top production</u>
 - entanglement and Bell observables are also sensitive
 - in the dilepton channel, all O(1/ Λ^2) effects in the top decay cancel out (to less than permille level)
 - best predictions are currently at NLO QCD with approximate-NLO spin effects: this is not something we can match with our MC, better to unfold the data
- 4-quark operators need NLO calculations
 - projections of CMS-like analysis to full Run 2+3 give competitive constraints wrt. to current full global fits to top LHC data

Quantum state tomography with weak decays

"Decaying W bosons are their own polarimeters"

- <u>HWW*</u> provides a <u>near-maximally entangled</u> state
 - spin density matrix has 80 real parameters
 - can be uniquely determined from angular distributions
 - violation of Bell's inequality for a pair of qutrits can be probed from "only" 10 such distributions
- Sensitivity estimate in the lvlv final state range from 1σ to 5σ
 - but neglects backgrounds and assumes 10 GeV resolution on neutrino reconstruction... unrealistic?

Quantum state tomography with weak decays

Quantum tomography of diboson systems

Formalism can be <u>extended</u> to all massive diboson final states: HWW*, HZZ*, WW, WZ, ZZ

pp→VV infeasible at the HL-LHC: have to "wait" for FCC/muon colliders

Expect HWW* to be systematically dominated, but HZZ* gets better with stats

- Bell's inequality violation at most 1σ for HWW*
- 1.3 σ for HZZ* in Run 2, 5.6 σ at HL-LHC
- but once again the "experimental scenarios" are likely too idealised

HZZ* could further be used to **drive constraints** on **anomalous** couplings \rightarrow stronger than cross section alone!

Entanglement and Bell's inequalities in HZZ*

We can exploit further the <u>symmetries of the ZZ final state</u>, to **avoid** having to study the full 80-parameter spin density matrix

→ entanglement marker narrowed down to 2 doubly-differential observables

Observing entanglement becomes equivalent to observing an asymmetry in either!

Highlights the relevance of mass cuts

We are looking to show C \neq 0 and I₃>2

Experimental projections compatible with other theory predictions, slightly more realistic scenario due to 4 lepton final state...

• LHC Run 2+3

	min m_{Z_2}							
	0	10 GeV	20 GeV	30 GeV				
\overline{N}	450	418	312	129				
$C_{2,1,2,-1}$	-0.98 ± 0.31	-0.97 ± 0.33	-1.05 ± 0.38	-1.06 ± 0.61				
$C_{2,2,2,-2}$	0.60 ± 0.37	0.64 ± 0.38	0.74 ± 0.43	0.82 ± 0.63				
I_3	2.66 ± 0.46	2.67 ± 0.49	2.82 ± 0.57	2.88 ± 0.89				

Table 1: Values $C_{2,1,2,-1}$, $C_{2,2,2,-2}$ and I_3 obtained from 1000 pseudo experiments with $L = 300 \text{ fb}^{-1}$.

HL-LHC

	min m_{Z_2}								
	0	10 GeV	20 GeV	30 GeV					
N	4500	4180	3120	1290					
$C_{2,1,2,-1}$	-0.95 ± 0.10	-1.00 ± 0.10	-1.04 ± 0.12	-1.04 ± 0.19					
$C_{2,2,2,-2}$	0.60 ± 0.12	0.64 ± 0.12	0.74 ± 0.14	0.83 ± 0.20					
I_3	2.63 ± 0.15	2.71 ± 0.16	2.81 ± 0.18	2.84 ± 0.28					

Table 2: Same as Table 1, for $L = 3 \text{ ab}^{-1}$.

A twist on polarisations: H*ZZ (not a typo!)

ATLAS recently proposed a new analysis strategy to search for <u>high-mass</u> <u>off-shell</u> <u>Higgs</u> bosons in the 4 lepton final state \rightarrow 2 on-shell Z bosons!

Allows to use another **entanglement** "<u>trick</u>": entanglement marker can be recast as binary test between observing only longitudinal polarisations of the Z bosons (**separable**) or both transverse and longitudinal (**entangled**).

Can be done with lab-frame observables (very clean) and existing Monte Carlo techniques (well defined polarisations)

In practice: completely stat dominated all the way up to HL-LHC

Resampling polarisations in HWW*

The "<u>trick</u>" is saved in the H-onshell/W-offshell regime by the assumption that the W decays to massless particles: OK for e/μ , not for taus (but we don't want to look at taus anyway)

Rely on the <u>"CAR" method</u> (*custom angle replacement*) to resample existing HWW* MC samples according to new PDFs where we change the W polarisations

 \rightarrow currently under study for application within ATLAS

Accessing entanglement in semi-leptonic HWW*

Dileptonic WW: clean observables at detector-level, but very hard to reconstruct the full Higgs system to measure the spin density matrix.

Semileptonic WW was so far too messy (large SM backgrounds)

 \rightarrow <u>new technique</u> inspired from top reconstruction helps!

- exploit charm tagging to reconstruct on-shell $W \rightarrow cs$
- off-shell W*→Iv reconstructed with Neutrino Weighting
- both reconstructions can be used to suppress backgrounds: opens up a practical new final state for Higgs physics!

Wrapping it up

Multiple final states to look at:

- ttbar, HWW*, HZZ* ($\underline{\tau\tau}$ and <u>VV</u> also received attention, but not nearly as promising)
- multi-lepton final states are "easier", but we benefit from tackling complicated reconstruction problems (semileptonic HWW, dileptonic ttbar/HWW, off-shell resonances...)
- qubits vs qutrits, two- and three-particle entanglement, decays...

The ultimate goal is to **measure the full spin density matrices** (in several bases and differentially in the invariant mass of the system)

- can also target observation of entanglement by using dedicated observables (few caveats of SM-like assumptions)
- Bell's inequality violation very challenging
- quantum discord could be measured "properly" for the first time...

Backup

Quantum entanglement in di-tau systems

Eur. Phys. J. C 83, 162 (2023)

Spin correlations at NNLO

Spin correlations: ATLAS and CMS

Event selection

- 1 electron and 1 muon (opposite charges)
- single lepton triggers
- leptons' $p_{T}>25-28$ GeV
- at least 2 jets with $p_T > 25 \text{ GeV}$
- at least 1 b-tagged jet (at 85% b-tagging efficiency)

TOPQ-2021-24

Process	Incl	lusive		340 – 380 GeV		380 – 500 GeV			> 500 GeV			
tī	1030000	±	40000	202000	±	8000	408000	±	16000	417000	±	17000
tW	59800	±	1100	10330	±	200	23800	±	500	25700	±	500
Z+jets	38000	±	4000	9300	±	400	19000	±	4000	9730	±	270
WW/WZ/ZZ	9140	±	340	1320	±	50	3280	±	120	4540	±	170
$t\bar{t}X$	2959	±	6	437.7	±	2.1	1080.1	±	3.4	1441	±	4
fakes	17700	±	8900	3600	±	1900	7100	±	3800	7000	±	3700
Expectation	1150000	±	40000	227000	±	8000	462000	±	17000	466000	±	17000
Data	1105403			225056			441196			439151		
data/MC	0.96	±	0.03	0.99	±	0.04	0.95	±	0.04	0.94	±	0.04

The reweighting method

- We have no handle on the "amount of entanglement" in the generators, but we know exact functional forms at parton-level → can reweight D
- Fit a 3rd order polynomial to extract the dependence on M(ttbar)

$$D_{\Omega}(m_{t\bar{t}}) = x_0 + x_1 \cdot m_{t\bar{t}}^{-1} + x_2 \cdot m_{t\bar{t}}^{-2} + x_3 \cdot m_{t\bar{t}}^{-3}$$

• Then reweight each event as

$$w = \frac{1 - D_{\Omega}(m_{t\bar{t}}) \cdot X \cdot \cos \varphi}{1 - D_{\Omega}(m_{t\bar{t}}) \cdot \cos \varphi}$$

Data / MC in the signal region

Data / MC outside the signal region

Investigations of parton shower effects

and seem to largely match the Dipole vs Angular ordering schemes

At threshold: need input from the theorists

- Our MC generators don't include the necessary non-perturbative effects how do we get around that?
 - <u>Fuks et al.</u> implemented a BSM Lagrangian in MadGraph \rightarrow **toponium**
 - A number of calculations available, most recently <u>Ju et al.</u>
 - pure parton-level calculation (stable tops), resums leading-power and next-to-leading-power calculations and matches to NNLO differential ttbar

ATLAS threshold effects

Investigate 3 approximations of npQCD threshold effects:

- rescale cross section in a 5 GeV window [purple]
- reweight events to match shape (bump) [red]
- reweight + add correction for non-spin singlet [orange]

Maximum effect on D is ~0.5%

dσ / dM [pb/GeV]

M [GeV]

credit: Y. Afik

Separable and entangled states

Example: top pair production

<u>J.A. Aguilar Saavedra</u>

 $q_L q_L$ [-bar] $\rightarrow t$ t-bar gives a spin configuration $|\langle - \rangle \otimes |\langle - \rangle$ [in the q_L direction]

This is obviously not entangled.

 $q_R q_R$ [-bar] $\rightarrow t$ t-bar gives a spin configuration $| \rightarrow \rangle \otimes | \rightarrow \rangle$

Not entangled either.

g g \rightarrow t t-bar at threshold gives $\frac{1}{\sqrt{2}}(|\uparrow\rangle \otimes |\downarrow\rangle - |\downarrow\rangle \otimes |\uparrow\rangle)$

This one is entangled.

Mixed states in top pair production

 $qq \rightarrow t$ t-bar is 50% of the time $q_L q_L$ and 50% of the time $q_R q_R$

Then, we have 50% of the time $| \leftrightarrow \rangle \otimes | \leftrightarrow \rangle$ and 50% $| \rightarrow \rangle \otimes | \rightarrow \rangle$

Obviously, in $qq \rightarrow t$ t-bar we do have t t-bar spin correlations. But not entanglement!

General bipartite qubit system

$$\rho = \frac{1}{4} \left(\mathbb{1} \otimes \mathbb{1} + \sum_{i} (B_i^+ \sigma_i \otimes \mathbb{1} + B_i^- \mathbb{1} \otimes \sigma_i) + \sum_{ij} C_{ij} \sigma_i \otimes \sigma_j \right)$$

 $\rho = \frac{1}{4} \begin{bmatrix} 1 + B_3^+ + B_3^- + C_{33} & B_1^- + C_{31} - i(B_2^- + C_{32}) & B_1^+ + C_{13} - i(B_2^+ + C_{23}) & C_{11} - C_{22} - i(C_{12} + C_{21}) \\ B_1^- + C_{31} + i(B_2^- + C_{32}) & 1 + B_3^+ - B_3^- - C_{33} & C_{11} + C_{22} + i(C_{12} - C_{21}) & B_1^+ - C_{13} - i(B_2^+ - C_{23}) \\ B_1^+ + C_{13} + i(B_2^+ + C_{23}) & C_{11} + C_{22} - i(C_{12} - C_{21}) & 1 - B_3^+ + B_3^- - C_{33} & B_1^- - C_{31} - i(B_2^- - C_{32}) \\ C_{11} - C_{22} + i(C_{12} + C_{21}) & B_1^+ - C_{13} + i(B_2^+ - C_{23}) & B_1^- - C_{31} + i(B_2^- - C_{32}) & 1 - B_3^+ - B_3^- + C_{33} \end{bmatrix}$

Peres-Horodecki: if ρ^{T2} has at least one negative eigenvalue, the state is entangled

$$\frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega_1 \Omega_2} = \frac{1}{4\pi^2} \left(1 + \alpha_1 \mathbf{B}_1 \cdot \hat{\ell}_1 + \alpha_2 \mathbf{B}_2 \cdot \hat{\ell}_2 + \alpha_1 \alpha_2 \hat{\ell}_1 \cdot \mathbf{\mathbb{C}} \cdot \hat{\ell}_2 \right)$$

Production phase-space

1000

Eur. Phys. J. Plus (2021) 136

z-axis: concurrence C[p]

1.0

$$C[\rho] \equiv \max(0, \lambda_1 - \lambda_2 - \lambda_3 - \lambda_4) \tag{4}$$

where λ_i are the eigenvalues, ordered in decreasing magnitude, of the matrix $C(\rho) = \sqrt{\sqrt{\rho}\tilde{\rho}\sqrt{\rho}}$, with $\tilde{\rho} = (\sigma_2 \otimes \sigma_2) \ \rho^* \ (\sigma_2 \otimes \sigma_2)$ and ρ^* the complex conjugate of the density matrix in the usual spin basis of σ_3 . The concurrence satisfies $0 \leq C[\rho] \leq 1$, with a quantum state being entangled if and only if $C[\rho] > 0$. Therefore, states satisfying $C[\rho] = 1$ are maximally entangled. We refer

 $C[\rho] > 0 \Leftrightarrow$ entanglement

Dilepton ttbar selection

Post-decay three-particle entanglement

Movel entanglement tests that were not possible before.

What is genuinely new in particle physics with respect to experiments with electrons and photons? Particle decay.*

Post-decay entanglement:

A and B entangled $A \rightarrow A_1 A_2$

A₁, A₂ and B entangled A₁ and B entangled

Entanglement and post-selection:

JAAS 2308.07412

AAS 2307.06991

A and B entangled $A \rightarrow A_1 A_2$ Measurement on B

 \approx spin selection on A, which already has decayed

* J. Bernabéu, talk at 7th Red LHC workshop, Madrid, May 10-12 2023

J.A. Aquilar Saavedra

ATLAS vs CMS comparison

Analysis Method	ATLAS	СМЅ		
Dataset	Full Run 2 (140.0 fb ⁻¹)	2016 (35.9 fb ⁻¹)		
tī decay	Di-lepton $(e\mu)$	Di-lepton $(e\mu/ee/\mu\mu)$		
Main selections	$340 < M_{t\bar{t}} < 380$ GeV	$345 < M_{tar{t}} < 400$ GeV, $eta_{tar{t}} < 0.9$		
$t\bar{t}$ reconstruction	Ellipse method Neutrino weighting			
Corrected to	Particle-level	Parton-level		
Fit type	No fit, calibration curve	Template fit		
Alternative hypothesis D	Reweighing	Mixing samples with and without spin correlation		
Threshold effects	Neglected	Considered		
Dominant systematic	Top decay, PDF, Recoil, FSR, Scales, NNLO	JES, Toponium, ISR		
Nominal MC	PowhegBox+Pythia	PowhegBox+Pythia		
Alternative MC	PowhegBox+Herwig, bb4ℓ	PowhegBox+Herwig, MG5_AMC@NLO [FxFx]		
Expected D	-0.470 ± 0.002 [stat.] ± 0.018 [syst.]	$-0.465^{+0.016}_{-0.017}$ [stat.] $^{+0.019}_{-0.022}$ [syst.]		
Observed D	-0.547 ± 0.002 [stat.] ± 0.021 [syst.]	-0.478 ± 0.017 [stat.] $^{+0.018}_{-0.021}$ [syst.]		
Significance	$>> 5\sigma$	> 50		

Table: Main differences between the ATLAS and CMS analyses.

credit: Y. Afik

Reconstruction for the dilepton entanglement result

the detector. Several methods are available to reconstruct the top quarks from the detector level charged leptons, jets and E_T^{miss} . The main method used in this work is the Ellipse method [70], which is a geometric approach to analytically calculate the neutrino momenta. Approximately 85% of events are successfully reconstructed by this method. If this method fails, the Neutrino Weighting method [71], which assigns a weight to each possible solution by the compatibility between the neutrino momenta and the E_T^{miss} in the event, after scanning possible values of the pseudo-rapidities of the neutrinos, is used. If both methods fail,

TOPQ-2021-24

The Ellipses method

Assume: everything is on-shell AND neutrinos are the source of the missing E_{T}

 \rightarrow neutrino momenta are **geometrically** constrained to an ellipse

The Neutrino Weighting method

- Dates back to $\underline{D0}$ (1997), they measured $m_{top} = 172.0 \pm 7.5 \text{ GeV}$
- LHC Run 1 combination (2023) measured $m_{top} = 172.52 \pm 0.33$ GeV
- **Don't assume** that the missing E_{T} comes from the neutrinos
 - instead scan (η_1, η_2) and for each pair extract (p_{x1}, p_{y1}) and (p_{x2}, p_{y2}) from the mass constraints
 - \circ then compare to missing E_{T} and extract a weight

$$w = \exp\left(\frac{-\Delta E_x^2}{2\sigma_x^2}\right) \cdot \exp\left(\frac{-\Delta E_y^2}{2\sigma_y^2}\right)$$

• Still have to check the b-jet assignments, possible dependence on m_{top}, smearing in case there are no solutions, ...

 \rightarrow very CPU-expensive!

Aside: Neutrino Weighter with a twist

We reconstruct many Higgs each event under different assumptions of m_{W*} and η_v.

"Can we throw machine learning at it?"

Simple \rightarrow Complex: add more inputs and more layers, get *improvement in resolution*. DNN \rightarrow Probabilistic DNN: get an estimate of the

aleatoric uncertainty, remove the bias.

Reconstructing the two neutrinos' 4-vectors is the hard part...

But maybe this is not always the goal? For instance, we could regress m(ttbar) directly:

- Z'→ttbar resonance searches?
- dependence of m(ttbar) on top Yukawa?
- reducing the amount of dilution in QE/BIV measurements?

All-hadronic ttbar: should be easy, right?

All decay products are visible jets \rightarrow **completely avoid the problems** associated with neutrinos!

But now have to deal with combinatorics...

Machine learning instead of combinatorics: SPA-Net

Symmetry-Preserving Attention Network

Transformer-Encoder: state-of-the-art from Natural Language Processing \rightarrow relate the input jets to each other in the latent space

Tensor attention: impose

symmetries of the topology W ~ qq / top ~ bqq

		Event	SPA-NET Efficiency		χ^2 E	Efficiency
	N _{jets}	Fraction	Event	Top Quark	Event	Top Quark
All Events	== 6	0.245	0.643	0.696	0.424	0.484
	== 7	0.282	0.601	0.667	0.389	0.460
	≥8	0.320	0.528 0.613		0.309	0.384
	Inclusive	0.848	0.586	0.653	0.392	0.457
Complete Events	== 6	0.074	0.803	0.837	0.593	0.643
	== 7	0.105	0.667	0.754	0.413	0.530
	≥8	0.145	0.521	0.662	0.253	0.410
	Inclusive	0.325	0.633	0.732	0.456	0.552

SciPost Phys. 12 (2022) 178

Injecting yet more physics into the machine: Topographs

Phys. Rev. D 107 (2023) 11

Physically motivated representation of the inputs: graph

- \rightarrow inject intermediate resonances and specify the allowed connections
 - Edge regression: find best assignments
 - Node regression: predict the kinematics of the resonances
 - Performs as well as SPA-Net

	6j 2b	6j >=2b	7j 2b	7j >=2b	>=6j 2b	>=6j >=2b
Best Spanet [%]	81.58	79.60	65.09	63.09	68.95	66.20
Best Topograph [%]	81.44	79.53	64.91	62.81	68.86	66.24

From reconstruction to classification

Could select only those events that are **well-reconstructed**:

- signal vs background?
- unfolding?
- modelling uncertainties?

A middle ground? ttbar \rightarrow lepton+jets

Final state with a single neutrino: can be **fully determined from one mass constraint** (on-shell W) \rightarrow analytical solution(s)

Is this useful for spin correlation and quantum information studies?

 \rightarrow Yes! the d-quark from the W decay has a_{spin} ~1

$$p_z^{\nu} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a},$$

$$a = (p_{z}^{\ell})^{2} - (E^{\ell})^{2},$$

$$b = \alpha p_{z}^{\ell},$$

$$c = \frac{\alpha^{2}}{4} - (E^{\ell})^{2} (p_{T}^{\nu})^{2},$$

$$\alpha = m_{W}^{2} - m_{\ell}^{2} + 2(p_{x}^{\ell} p_{x}^{\nu} + p_{y}^{\ell} p_{y}^{\nu}).$$

Conditional neutrino regression: v-flows

- Embed your input particles in some way
- 2. Train a mapping of the Normal distribution to the kinematics of the neutrinos
- Learn what the likelihood of the neutrino kinematics based on the rest of the event

 \rightarrow no assumption of on-shell W's, perfect reconstruction etc.

Conditional neutrino regression: v-flows

SciPost Phys. 14 (2023) 159

More neutrinos! v^2 -flows

66

arXiv:2307.02405

More neutrinos! v^2 -flows

67

arXiv:2307.02405